Optimal Stochastic Approximation Algorithms for Strongly Convex Stochastic Composite Optimization I: A Generic Algorithmic Framework
نویسندگان
چکیده
In this paper we present a generic algorithmic framework, namely, the accelerated stochastic approximation (AC-SA) algorithm, for solving strongly convex stochastic composite optimization (SCO) problems. While the classical stochastic approximation (SA) algorithms are asymptotically optimal for solving differentiable and strongly convex problems, the AC-SA algorithm, when employed with proper stepsize policies, can achieve optimal or nearly optimal rates of convergence for solving different classes of SCO problems during a given number of iterations. Moreover, we investigate these AC-SA algorithms in more detail, such as, establishing the large-deviation results associated with the convergence rates and introducing efficient validation procedure to check the accuracy of the generated solutions.
منابع مشابه
Optimal Stochastic Approximation Algorithms for Strongly Convex Stochastic Composite Optimization, II: Shrinking Procedures and Optimal Algorithms
In this paper we study new stochastic approximation (SA) type algorithms, namely, the accelerated SA (AC-SA), for solving strongly convex stochastic composite optimization (SCO) problems. Specifically, by introducing a domain shrinking procedure, we significantly improve the large-deviation results associated with the convergence rate of a nearly optimal AC-SA algorithm presented in [4]. Moreov...
متن کاملA Parallel Stochastic Approximation Method for Nonconvex Multi-Agent Optimization Problems
Consider the problem of minimizing the expected value of a (possibly nonconvex) cost function parameterized by a random (vector) variable, when the expectation cannot be computed accurately (e.g., because the statistics of the random variables are unknown and/or the computational complexity is prohibitive). Classical sample stochastic gradient methods for solving this problem may empirically su...
متن کاملAn optimal method for stochastic composite optimization
This paper considers an important class of convex programming (CP) problems, namely, the stochastic composite optimization (SCO), whose objective function is given by the summation of general nonsmooth and smooth stochastic components. Since SCO covers non-smooth, smooth and stochastic CP as certain special cases, a valid lower bound on the rate of convergence for solving these problems is know...
متن کاملOptimal Stochastic Strongly Convex Optimization with a Logarithmic Number of Projections
We consider stochastic strongly convex optimization with a complex inequality constraint. This complex inequality constraint may lead to computationally expensive projections in algorithmic iterations of the stochastic gradient descent (SGD) methods. To reduce the computation costs pertaining to the projections, we propose an Epoch-Projection Stochastic Gradient Descent (Epro-SGD) method. The p...
متن کاملDynamic Stochastic Approximation for Multi-stage Stochastic Optimization
In this paper, we consider multi-stage stochastic optimization problems with convex objectives and conic constraints at each stage. We present a new stochastic first-order method, namely the dynamic stochastic approximation (DSA) algorithm, for solving these types of stochastic optimization problems. We show that DSA can achieve an optimal O(1/ǫ4) rate of convergence in terms of the total numbe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 22 شماره
صفحات -
تاریخ انتشار 2012